Contoh Soal Persamaan Nilai Mutlak Lengkap dengan Pembahasan

Berikut ini adalah contoh soal matematika bab persamaan nilai mutlak yang dapat anda gunakan sebagai media pembelajaran dan evaluasi sebelum uji.

Tentukan HP dari persamaan:
  1. |x +5| = 3
  2. |2x-3| = 5
  3. |x+1| + 2x = 7
  4. |3x+4| = x-8
  5. |5- 2/3x| – 9 = 8
  6. |x-7| + |2x-4|=5
  7. |2x+4| – |3-x|= -1
  8. |5x+10| = -|x2+2x|

Penyelesaian:
Penyelesaiannya ada 2 cara.. Terserah mau memakai cara yang mana hehe
Caranya Tika contohkan untuk nomor 1 saja ya! Selanjutnya Tika akan menggunakan cara yang Tika suka. Hehe
  1. Cara pertama:
|x+5| = 3
Kedua ruas dikuadratkan karena mutlaknya bisa bernilai positif atau negatif, menjadi
<=> (x+5)2 = 32
<=> x2+10x+25 = 9
<=> x2+10x+25-9 = 0
<=> x2+10x+16 = 0
<=> (x+8) = 0 V (x+2) = 0
<=> x = -8 V x = -2
Dicek:
Untuk x = -8, ruas kiri = |x+5| = |-8+5| = |-3| = 3 = Ruas kanan
Jadi, x = -8 memenuhi
Untuk x = -2, ruas kiri = |x+5| = |-2+5| = |3| = 3 = ruas kanan
Jadi, x = -2 memenuhi
Jadi, HP = {-2, -8}

Cara kedua:
Untuk mutlak bernilai positif:
(x+5) = 3
<=> x = 3-5
<=> x = -2

Untuk mutlak bernilai negatif:
-(x+5) = 3
<=> -x-5 = 3
<=> -x = 3 + 5
<=> -x = 8
<=> x = -8
Dicek:
Untuk x = -8, ruas kiri = |x+5| = |-8+5| = |-3| = 3 = Ruas kanan
Jadi, x = -8 memenuhi
Untuk x = -2, ruas kiri = |x+5| = |-2+5| = |3| = 3 = ruas kanan
Jadi, x = -2 memenuhi
Jadi, HP = {-2, -8}

Hehe… sama, kan??


  1. |2x-3| = 5
Untuk mutlak bernilai positif:
(2x-3) = 5
<=> 2x = 5 + 3
<=> 2x = 8
<=> x = 4
Untuk mutlak bernilai negatif:
-(2x-3) = 5
<=> -2x+3 = 5
<=> -2x = 5-3
<=> -2x = 2
<=> x = -1

Dicek:
Untuk x = 4, ruas kiri = |2x-3| = |2.4 – 3| = |8 – 3| = |5| = 5 = ruas kanan
Jadi, x = 4 memenuhi
Untuk x = -1, ruas kiri = |2x-3| = |2.(-1) – 3| = |(-2)-3| = |-5| = 5 = ruas kanan
Jadi, x = -1 memenuhi

Jadi, HP = {-1, 4}

  1. |x+1| + 2x = 7
Untuk mutlak bernilai positif:
(x+1) + 2x = 7
<=> 3x = 6
<=> x = 2

Untuk mutlak bernilai negatif:
-(x+1) + 2x = 7
<=> -x-1+2x = 7
<=> x = 8

Dicek:
Untuk x = 2, ruas kiri = |x+1| + 2x = |2+1| + 2.2 = |3| + 4 = 3 + 4 = 7 = ruas kanan
Jadi, x = 2 memenuhi
Untuk x = 8, ruas kiri = |x+1| + 2x = |8+1| + 2.8 = |9| + 16 = 9 + 16 = 25 tdk sama dengan ruas kanan
Jadi, x = 8 tidak memenuhi

Jadi, HP = {2}

  1. |3x+4| = x-8
Untuk mutlak bernilai positif:
(3x+4) = x-8
<=> 2x = -12
<=> x = -6
Untuk mutlak nilai negatif:
-(3x+4) = x-8
<=> -3x-4 = x-8
<=> -4x = -4
<=> x = 1

Dicek:
|3x+4| = x-8
รณ |3x+4| – x = -8
Untuk x = -6, ruas kiri = |3x+4| – x = |3.(-6) + 4| – (-6) = |-14| + 6 = 14 + 6 = 20 tdk sama dengan ruas kanan
Jadi, x = -6 tidak memenuhi
Untuk x = 1, ruas kiri = |3x+4| – x = |3.1 + 4| – 1 = |7| – 1 = 7 – 1 = 6 tdk sama dengan ruas kanan
Jadi, x = 1 tidak memenuhi
Jadi, HP = {}

  1. |5- 2/3x| – 9 = 8

Untuk mutlak bernilai positif:
(5- 2/3x) – 9 = 8 |x3
<=> (15 – 2x) – 27 = 24
<=> -2x = 36
<=> x = -18
Untuk mutlak bernilai negatif:
-(5- 2/3x) – 9 = 8 |x3
<=> -(15 – 2x) – 27 = 24
<=> -15+2x-27 = 24
<=> 2x = 66
<=> x = 33

Dicek:
Untuk x = -18, ruas kiri = |5 -2/3x| – 9 = |5.(-18)| – 9 = |5+12| – 9 = |17| – 9 = 17 – 9 = 8 = ruas kanan
Jadi, x = -18 memenuhi
Untuk x = 33, ruas kiri = |5 -2/3x| – 9 = |5.(33)| – 9 = | 5-22| – 9 = |-17| – 9 = 17 – 9 = 8 = ruas kanan
Jadi, x = 33 memenuhi
Jadi, HP = {-18, 33}

  1. |x-7| + |2x-4|= 5
Untuk mutlak nilai positif:
(x-7) + (2x-4) = 5
<=> 3x = 16
<=> x = 16/3
Untuk mutlak nilai negatif:
-(x-7) + (-(2x-4)) = 5
<=> -x+7-2x+4 = 5
<=> -3x = -6
<=> x = 2

Dicek:
Untuk x = 16/3, ruas kiri = |x-7| + |2x-4| = |16/3 – 7| + |2.16/3 – 4| = |-5/3| + |20/3| = 5/3 + 20/3 = 25/3 tdk sama dengan ruas kanan
Jadi, x = 16/3 tidak memenuhi
Untuk x = 2, ruas kiri = |x-7| + |2x-4| = |2-7| + |2.2-4| = |-5| + |0| = 5 + 0 = 5 = ruas kanan
Jadi, x = 2 memenuhi
Jadi, HP = {2}

  1. |2x+4| – |3-x|= -1
Untuk mutlak bernilai positif:
(2x+4) – (3-x)= -1
<=> 2x+4-3+x = -1
<=> 3x = -2
<=> x = -2/3
Untuk mutlak bernilai negatif:
-(2x+4) – (-(3-x)) = -1
<=> -2x-4+3-x = -1
<=> -3x = 0
<=> x = 0

Dicek:
Untuk x = -2/3, ruas kiri = |2x+4| – |3-x| = |2.(-2/3)+4| – |3-(-2/3)| = |8/3| – |11/3| = 8/3 – 11/3 = -3/3 = -1 = ruas kanan
Jadi, x = -2/3 memenuhi
Untuk x = 0, ruas kiri = |2x+4| – |3-x| = |2.0 + 4| – |3 – 0| = |4| – |3| = 4 – 3 = 1 tdk sama dengan ruas kanan
Jadi, x = 0 tidak memenuhi
Jadi, HP = {-2/3}

  1. |5x+10| = -|x2+2x|
<=> |5x+10| + |x2+2x| = 0
Untuk mutlak bernilai positif:
(5x+10) + (x2+2x) = 0
<=> x2 + 7x + 10 = 0
<=> (x+5) = 0 V (x+2) = 0
<=> x = -5 V x = -2
Untuk mutlak bernilai negatif:
-(5x+10) + (-(x2+2x)) = 0
<=> -5x-10- x2-2x = 0
<=> – x2 -7x-10 = 0 |x(-1)
<=> x2 +7x+10 = 0
<=> (x+5) = 0 V (x+2) = 0
<=> x = -5 V x = -2

Dicek:
Untuk x = -5, ruas kiri = |5x+10| + |x2+2x|= |5.(-5)+10| + |(-5)2 + 2.(-5)| = |-15| + |15| = 15 + 15 = 30 tdk sama dengan ruas kanan
Jadi, x = -5 tidak memenuhi
Untuk x = -2, ruas kiri = |5x+10| + |x2+2x|= |5.(-2)+10| + |(-2)2 + 2.(-2)| = |0| + |0| = 0+0 = 0 = ruas kanan
Jadi, x = -2 memenuhi
Jadi, HP = {-2}

Itulah Contoh Soal Persamaan Nilai Mutlak Lengkap dengan Pembahasan, semoga bermanfaat.
Share:

0 comments:

Post a Comment